當(dāng)前位置: 電池聯(lián)盟網(wǎng) > 前沿 >

今日Nature Energy:超快鎂金屬電池

時(shí)間:2020-12-01 10:38來源:知社學(xué)術(shù)圈 作者:綜合報(bào)道
點(diǎn)擊:
 
       電池自2000年問世以來一直被認(rèn)為有極大的潛力超越鋰離子電池,其原因主要是低價(jià),高體積容量,并且無枝晶生長行為的鎂金屬可以直接用作電池負(fù)極。但是這項(xiàng)技術(shù)的發(fā)展一直非常緩慢。鎂二價(jià)離子和電解液與正極材料相互作用較強(qiáng),導(dǎo)致鎂離子的解離和擴(kuò)散極為緩慢,因此很少有正極材料可以高效地儲(chǔ)存鎂離子。當(dāng)前為數(shù)不多的可儲(chǔ)鎂的正極材料也只有在高溫和低電流密度下才能趨近理論容量。此外,鎂金屬能否在高電流密度條件下保持無枝晶生長,業(yè)界也存在一定的爭議。因此,尋找到合適的電解液和正極材料讓Mg2+能夠快速地傳輸和存儲(chǔ),將成為得到高功率鎂電池的關(guān)鍵。
 
       近日,美國休斯頓大學(xué)姚彥教授課題組聯(lián)合北美豐田研究中心在鎂電池領(lǐng)域取得了重大突破,以“High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes”為題在Nature Energy上報(bào)道了一種基于異相氧化還原烯醇化機(jī)理和弱配位電解液的高功率鎂電池。該工作發(fā)現(xiàn)了一種能快速儲(chǔ)存Mg2+離子的正極反應(yīng)機(jī)理,同時(shí)發(fā)明了一種基于醚類混合溶劑和弱配位陰離子(CB11H12 )的鎂電解液,使鎂金屬能夠在20 mA cm-2的高電流密度下無枝晶沉積。該電池實(shí)現(xiàn)了30.4 kW kg 1的功率密度,比之前報(bào)道的鎂電池的最高輸出功率高出幾乎兩個(gè)數(shù)量級。姚彥教授課題組近年來的一系列鎂電池的工作包括:
 
       多價(jià)態(tài)離子電池的現(xiàn)狀和未來趨勢Nature Energy2020, 5, 646–656
 
       控制儲(chǔ)鎂機(jī)制構(gòu)建高能有機(jī)聚合物鎂電池Joule2019, 3, 782-793
 
       儲(chǔ)存鎂氯離子的擴(kuò)層二硫化鈦電池Nature Communications2017, 8, 339
 
       高電壓鎂鈉混合離子電池Nano Energy2017, 34, 188-194
 
       石墨烯修飾的氧化釩納米線氣凝膠鎂電池正極材料Nano Energy2015,18, 265-272
 
       擴(kuò)層二硫化鉬納米復(fù)合材料鎂電池Nano Lett.2015, 15, 2194-2202
 
1
 
新型儲(chǔ)鎂機(jī)理
 
       目前能真正儲(chǔ)鎂的正極材料分為嵌入型(intercalation)和轉(zhuǎn)化型(conversion)兩種。嵌入型材料內(nèi)鎂離子擴(kuò)散緩慢,導(dǎo)致它們只能在低電流密度或高溫下運(yùn)作。轉(zhuǎn)化型正極材料的反應(yīng)涉及共價(jià)鍵斷鍵過程,致使它們的反應(yīng)動(dòng)力學(xué)緩慢。為解決上述兩個(gè)問題,研究人員使用有機(jī)分子1,2-苯醌衍生物PTO提出了一種新的儲(chǔ)鎂機(jī)理,通過異相液固(沉積-溶解)反應(yīng)巧妙地繞過了鎂離子固相擴(kuò)散緩慢的問題(圖1a和1b),而且此反應(yīng)利用了不涉及共價(jià)鍵成/斷鍵的羰基氧化還原反應(yīng)(氧化還原烯醇化機(jī)理),避免了轉(zhuǎn)化型材料(例如S8)動(dòng)力學(xué)緩慢的問題(圖1c和1d)。這種新的正極儲(chǔ)鎂機(jī)理致使有機(jī)材料PTO在無氯電解液Mg(CB11H12)2/tetraglyme中展現(xiàn)了優(yōu)異的電化學(xué)性能(圖1e)。
 
       該電池充放電曲線中出現(xiàn)兩個(gè)放電平臺(tái),對應(yīng)發(fā)生兩個(gè)雙電子還原反應(yīng),這與PTO分子中的四個(gè)羰基官能團(tuán)(C=O C–O )相吻合。其放電比容量高達(dá)315 mAhg 1,平均放電電壓為2.03V。同步輻射軟X射線吸收譜(sXAS)證明了發(fā)生的氧化還原烯醇化反應(yīng)是可逆反應(yīng)。XPS和ICP進(jìn)一步證明,在PTO的放電過程形成的兩個(gè)放電態(tài)的PTO電極中,B和Mg的元素比分別為2.12和2.54,說明PTO中儲(chǔ)存的是Mg2+而不是Mg(CB11H12)+,因?yàn)楹笳叩腂:Mg應(yīng)為11:1。之后,研究人員把不同放電態(tài)的PTO正極材料從Swagelok電池中取出,浸泡在DME溶劑中,進(jìn)行光學(xué)表征來探索PTO反應(yīng)機(jī)理。結(jié)果顯示,當(dāng)PTO部分放電到2.0V時(shí),其在DME中形成的是紫色溶液,說明形成的中間產(chǎn)物Mg1PTO是可溶的。而完全放電到0.9V后PTO呈現(xiàn)的是無色溶液,說明形成的終產(chǎn)物Mg2PTO是不可溶的。這是一種異相液-固反應(yīng),Mg2+和PTO4 間的自發(fā)沉淀抵消了溶劑從Mg2+剝離的能量消耗。雖然PTO與S電極均為異相反應(yīng),但PTO沒有共價(jià)鍵的斷裂和再形成過程,而S電極的很多問題都來自于其不可逆的和動(dòng)力學(xué)緩慢的共價(jià)鍵斷裂和再形成過程。
圖1. 正極材料異相氧化還原烯醇化機(jī)理。
 
2
 
異相氧化還原烯醇化機(jī)理的實(shí)用性
 
        液-固反應(yīng)會(huì)帶來兩個(gè)問題:(1)循環(huán)過程中不斷的溶解導(dǎo)致正極材料的損失,以及(2)溶解的正極放電中間產(chǎn)物導(dǎo)致鎂負(fù)極鈍化。為解決第一個(gè)問題,研究人員在正極和隔膜之間插入了一層氧化石墨烯(GO),用于阻止正極中間放電產(chǎn)物離開正極(圖2a),這使得該電池有良好的循環(huán)穩(wěn)定性(圖2b)。對于第二個(gè)問題,研究人員發(fā)現(xiàn)溶解的Mg1PTO不會(huì)提高M(jìn)g負(fù)極的沉積溶解的過電勢(圖2c和2d),這與Mg-S體系中顯著增加的過電勢形成對比。
圖2. 異相氧化還原烯醇化化學(xué)對循環(huán)穩(wěn)定性和陽極可逆性的實(shí)用性影響。
 
3
 
高導(dǎo)電率無氯弱配位鎂電解液
 
       研究人員發(fā)現(xiàn)即使PTO電極在MMC-G4電解液中已經(jīng)展示了快速的反應(yīng)動(dòng)力學(xué),電池的功率仍被高粘度強(qiáng)配位的tetraglyme(G4)溶劑所限制。為了完全挖掘該電池的功率性能,研究人員決定優(yōu)化基于Mg(CB11H12)2的電解液,使用低粘度弱配位的溶劑來取代G4溶劑。雖然很多短鏈醚類溶劑都滿足此條件,可是在之前的工作中研究人員發(fā)現(xiàn)Mg(CB11H12)2不溶于那些醚類溶劑。但研究人員發(fā)現(xiàn)Mg(CB11H12)2可以溶于個(gè)別混合醚類溶劑組合。結(jié)果顯示THF/DME,DOL/DME,DOL/G2,THF/G2和DME/G2等組合均可以大幅提升Mg(CB11H12)2鹽的溶解度(圖3a)。在對Mg(CB11H12)2于DME/G2中溶解度(圖3b)和離子導(dǎo)電率(圖3c)詳細(xì)研究后,研究員們最終選擇0.5 mol kg 1MMC/(DME-G2)(1:1,質(zhì)量比)做進(jìn)一步研究。使用MMC/(DME-G2)電解液的三電極CV測試結(jié)果顯示,鎂負(fù)極沉積的過電位小于250mV,且鎂剝離過程電流可達(dá)100 mA cm-2,遠(yuǎn)大于包括MMC/G4在內(nèi)的其他鎂電解液可提供的電流。
 
4
 
大電流密度下鎂金屬無枝晶沉積
 
       圖3e展示了Mg|Cu非對稱電池的沉積-溶解的電化學(xué)性能,即便在50 mA cm-2的電流密度下,鎂金屬在MMC/(DME-G2)電解液中的沉積/剝離庫倫效率仍可以高達(dá)99.7%。圖3f顯示鎂在20 mA cm-2的電流密度和3 mAh cm-2的條件下無枝晶的沉積形貌。同樣條件下,Mg|Mg對稱電池可以穩(wěn)定循環(huán),累計(jì)沉積容量高達(dá)833 mAh cm-2(圖3g)。可見,即便是在如此苛刻的條件下,鎂金屬仍可以作為電池的安全負(fù)極。
圖3. MMC/(DME-G2)電解液的設(shè)計(jì)過程和電化學(xué)性能
 
5
 
高功率鎂電池
 
       最后研究人員結(jié)合PTO正極和MMC/(DME-G2)電解液構(gòu)建了一個(gè)超高功率鎂電池。如圖4a所示,在408 mA g 1(1C)的電流下,相比使用MMC/G4電解液的情況,該電池的放電平臺(tái)更加明顯,平均放電電壓提高到2.1V,倍率性能更是大幅提升,在20C和50C的倍率下比容量分別可達(dá)到278和210 mAh g-1。5C倍率下,電池循環(huán)200圈以后依然具有82%的容量保持率(圖4b)。圖4c對比了當(dāng)前基于純Mg2+存儲(chǔ)機(jī)理和用鎂金屬為負(fù)極電池的Ragone圖。之前報(bào)道的基于MgCl+或是溶劑化Mg2+存儲(chǔ)機(jī)理的電池不在比較范圍之內(nèi)?梢钥吹剑瑹o論是基于嵌入反應(yīng)機(jī)理的正極(如Mo6S8,Ti2S4)還是轉(zhuǎn)化反應(yīng)機(jī)理的正極(S和I2),它們均表現(xiàn)出較差的動(dòng)力學(xué)特性(充放電倍率最大只能到2C)。相反,基于異相烯化氧化還原機(jī)理的鎂電池展示出了30.4 kW kg-1的功率密度,這與之前最高功率密度(0.45 kW kg-1)的鎂電池相比是一個(gè)很大的提高。
圖4. 使用0.5mMMC/(DME-G2)電解液的Mg–PTO全電池的電化學(xué)性能
 
       董暉博士和Oscar Tutusaus博士為本文的共同第一作者,其他作者包括休斯敦大學(xué)梁衍亮教授和博士生章也,以及勞倫斯伯克利國家實(shí)驗(yàn)室的楊萬里博士和Zachary Lebens-Higgins博士。姚彥教授和北美豐田研究中心Rana Mohtadi博士為本文共同通訊作者。
 
       論文信息:
 
       文章鏈接: https://www.nature.com/articles/s41560-020-00734-0
 
       Hui Dong, Oscar Tutusaus, Yanliang Liang, Ye Zhang, Zachary Lebens-Higgins, Wanli Yang, Rana Mohtadi* and Yan Yao*, High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes integrated electronics, Nature Energy, 2020, DOI: 10.1038/s41560-020-00734-0
 
(責(zé)任編輯:子蕊)
文章標(biāo)簽: 電池 鎂金屬電池
免責(zé)聲明:本文僅代表作者個(gè)人觀點(diǎn),與中國電池聯(lián)盟無關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本網(wǎng)證實(shí),對本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實(shí)相關(guān)內(nèi)容。
凡本網(wǎng)注明 “來源:XXX(非中國電池聯(lián)盟)”的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé)。
如因作品內(nèi)容、版權(quán)和其它問題需要同本網(wǎng)聯(lián)系的,請?jiān)谝恢軆?nèi)進(jìn)行,以便我們及時(shí)處理。
QQ:503204601
郵箱:cbcu@cbcu.com.cn
猜你喜歡
專題
相關(guān)新聞
本月熱點(diǎn)
歡迎投稿
聯(lián)系人:王女士
Email:cbcu#cbcu.com.cn
發(fā)送郵件時(shí)用@替換#
電話:010-53100736
在線投稿
企業(yè)微信號
微信公眾號